Number Theory Homework V

RDB

July 11, 2022

This is our last homework! Homework is the most important part of our class. I hope that these assignments have been enlightening and fun.

Exercise 1 How many mutually incongruent solutions do each of the following quadratic congruence equations have?

- (a) $x^2 = 3 \pmod{11}$
- **(b)** $x^2 + 2x + 1 = 0 \pmod{5}$
- (c) $x^2 x + 2 = 0 \pmod{7}$

Solution 1

(a) (3 points) The quadratic residues of 11 are {1,4,9,5,3}, giving 5² ≡ 3 (mod 11). This means that -5 ≡ 6 (mod 11) is another solution, so there are two solutions. By the way, note that

$$(x-5)(x-6) = x^2 - 11x + 30$$

 $\equiv x^2 - 3 \pmod{11},$

even though these two polynomials are not literally equal.

(b) (3 points) This quadratic factors, giving $(x+1)^2 \equiv 0 \pmod{5}$. If we let y = x+1, this becomes $y^2 \equiv 0 \pmod{5}$, which has the unique solution y = 0. Therefore $x = -1 \equiv 4 \pmod{5}$ is the unique solution.

(c) (4 points) This quadratic does not factor, but we can write

$$x^{2} - x + 2 = (x - 1/2)^{2} - \frac{1}{4} + 2.$$

If we multiply by 4, then we obtain

$$4(x^2 - x + 2) = (2x - 1)^2 + 7.$$

Since gcd(4, 11) = 7, our equation is equivalent to

$$(2x-1)^2 + 7 \equiv 0 \pmod{7},$$

or

$$(2x-1)^2 \equiv 0 \pmod{7}.$$

This has a unique solution, namely the x such that $2x \equiv 1 \pmod{7}$, which is x = 4.

Exercise 2 Prove or provide a counterexample to the following statement: If *n* is composite, then $gcd(n, \phi(n)) > 1$.

Solution 2

(10 points) The smallest counterexample is n = 15, since $\phi(15) = 8$ and gcd(15, 8) = 1.

Numbers n such that $gcd(n, \phi(n)) = 1$ are called *cyclic*. It turns out that n is cyclic iff it is the product of distinct primes $p_1p_2 \cdots p_r$ where no p_i divides any $p_j - 1$. For example, $n = 2 \cdot 3$ is *not* cyclic, because 2 divides 3 - 1, but $n = 3 \cdot 5$ is, because 3 does not divide 5 - 1 and 5 does not divide 3 - 1.

Exercise 3 Using the law of quadratic residues, determine the value of $\binom{5}{p}$ for an odd prime $p \neq 5$. [Hint: Your answer will probably be of the form, "if $p \equiv X \pmod{Y}$, then ..., otherwise, ..."]

Solution 3

(10 points) Note that $5 \equiv 1 \pmod{4}$, so quadratic reciprocity states that

$$\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$$

for any odd prime $p \neq 5$. The quadratic residues of 5 are 1 and 4, so

$$\begin{pmatrix} 5\\ p \end{pmatrix} = \begin{cases} 1, & \text{if } p \equiv 1, 4 \pmod{5} \\ -1, & \text{if } p \equiv 2, 3 \pmod{5} \\ 0, & \text{if } p \equiv 0 \pmod{5} \end{cases}$$

Exercise 4

- (a) Is 11 a quadratic residue mod 863?
- (**b**) Is 3 a quadratic residue mod 1223?
- (c) Is 5 a quadratic reside mod 11027?

Solution 4

(a) (3 points) Since $11 \equiv 863 \equiv 3 \pmod{4}$, quadratic reciprocity states that

$$\left(\frac{11}{863}\right) = -\left(\frac{863}{11}\right).$$

Since $863 \equiv 5 \pmod{11}$,

$$\left(\frac{863}{11}\right) = \left(\frac{5}{11}\right),$$

and 5 is a quadratic residue mod 11. It follows that 11 is *not* a quadratic residue mod 863.

(b) (3 points) Since $3 \equiv 1223 \equiv 3 \pmod{4}$, quadratic reciprocity states that

$$\left(\frac{3}{1223}\right) = -\left(\frac{1223}{3}\right)$$
$$= -\left(\frac{2}{3}\right)$$
$$= 1.$$

Therefore 3 is a quadratic residue mod 1223.

(c) (4 points) Since $5 \equiv 1 \pmod{4}$, quadratic reciprocity states that

$$\left(\frac{5}{11027}\right) = \left(\frac{11027}{5}\right)$$
$$= \left(\frac{2}{5}\right)$$
$$= -1.$$

Therefore 5 is not a quadratic residue mod 11027.

Exercise 5

- (a) How many quadratic residues of 11 are in the interval [1, 11/2)?
- (b) How many quadratic residues of 13 are in the interval [1, 13/2)?
- (c) How many quadratic residues of 27 are in the interval [1, 27/2)?
- (d) Suppose that p = 4k + 1 is prime. Show that x is a quadratic residue of p iff p x is. What does this imply about the number of quadratic residues in the interval [1, p/2)?

Solution 5

- (a) There are 5: 1, 3, 4, 5
- (**b**) There are 3: 1, 3, 4
- (c) There are 6 (or 7): 1, 4, 7, 9, 10, 13 (possibly including 0)
- (d) Correction: This should have read p x, not x p.