
Number Theory Homework IV

RDB

June 26, 2022

In general, assume that variables like n, m, and k are integers.

Exercise 1 Prove that, if integers a and b divide an integer c, and gcd(a, b) = 1, then ab

divides c.
Solution 1
I think we already did this one. Didn’t we do Bézout’s lemma? Let’s do it another way.

The prime factorization of c contains primes from a and b, but there is no overlap
between them since gcd(a, b) = 1. The product ab just mashes those distinct primes
together, so ab divides c.

To be a little more formal, write a = pe11 · · · pemm and b = qr11 · · · q
rk
k , where the pi’s

and qk’s are distinct primes. Since a and c both divide c, these prime factorizations must
appear in the factorization of c as well:

c = (pe11 · · · pemm )(qr11 · · · q
rk
k )x

= abx,

where x is some integer.

Exercise 2 Find the general solution to the following congruence systems.

(a)

2x = 0 (mod 5)

x = −1 (mod 3)

(b)

x = 1 (mod 3)

x = 2 (mod 5)

x = 3 (mod 7)
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Solution 2

(a) (5 points) The CRT tells us that this has a single solution mod 15. This gives us a
few ways to find it.

i. Ad-hoc thinking: 5 | 2x iff 5 | x, so we are looking for a multiple of 5 that is
congruent to −1 (or 2) mod 3. The multiples of 5 are 0, 5, and 10. It’s clear
that x = 5 will work, so that’s the particular solution.

ii. Use the CRT formula. Particular solutions are x1 = 0 and x2 = −1. Thus, we
can take

x0 = x13(3)
−1 + x25(5)

−1

= (−1)5 · 2
= −10.

(The inverse of 5 mod 3 is 2, since 5 · 2 = 10 ≡ 1 (mod 3).)

iii. Just guess. There are only 15 values to check, so keep going until you hit
x = 5.

Once you have a particular solution x0, every other solution is of the form

x = x0 + 15k

for some integer k.

(b) (5 points) Same idea before, except now with three equations. Don’t forget to read
the book! You can do the same ad-hoc idea (see Problem 3 below for an example),
or you can use the formula. Here’s what the formula looks like.

Particular solutions are x1 = 1, x2 = 2, and x3 = 3. The formula is

x0 = x1(m2m3)(m2m3)
−1 + x2(m1m3)(m1m3)

−1 + x3(m1m2)(m1m2)
−1.

In this case, m2m3 = 35 ≡ 2 (mod 3), so (m2m3)
−1 = 2. Similarly, m1m3 =

21 ≡ 1 (mod 5), so (m1m3)
−1 = 1, and m1m2 = 15 ≡ 1 (mod 7), so (m1m2)

−1 =
1. Plugging all this in, we get

x0 = 1 · 35 · 2 + 2 · 21 · 1 + 3 · 15 · 1
= 70 + 42 + 45

= 157.
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So the general solution is

x = 157 + 3 · 5 · 7k = 157 + 105k.

(By shifting back, you can see that the smallest solution is 52.)

Exercise 3

(a) Show that if m1,m2, . . . ,mn is any sequence of positive integers which are pairwise
relatively prime, then there exist n consecutive positive integers x, x+1, . . . , x+n−1
such that x is divisible by m1, x + 1 is divisible by m2, and so on. [Hint: Chinese
Remainder Theorem.]

(b) Let the primes be enumerated by {pn}n≥1. That is, p1 = 2, p2 = 3, p3 = 5, and so
on.

Prove that, for any n, there exist n consecutive positive integers x, x+1, . . . , x+n−1
such that the first is divisible by p1, the second by p2, the third by p3, and so on. What
is the smallest positive x when n = 3?

Solution 3

(a) (5 points) This is equivalent to

x ≡ 0 (mod m1)

x ≡ −1 (mod m2)

...
x ≡ −(n− 1) (mod mn).

By the CRT, this has a particular solution x0, and all other solutions are of the form

x = x0 +m1m2 · · ·mnt

for some integer t. In particular, we can get x > 0 by choosing a sufficiently large t.

(b) (5 points) The existence of a solution is just the previous part with mk = pk. For
n = 3, the equations are

x ≡ 0 (mod 2)

x ≡ −1 (mod 3)

x ≡ −2 (mod 5).
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The CRT says that there is a unique solution mod 2 · 3 · 5 = 30. That’s a few too
many to check all of them, but we can start by looking at multiples of 5 minus 2:

−2, 3, 8, 13, 18, 23, 28.

Which of these are even?
−2, 8, 18, 28.

Which of these are congruent to −1 mod 3?

8.

So x = 8 is the smallest positive integer such that 2 | x, 3 | x+ 1, and 5 | x+ 2.

Exercise 4 A class in number theory was to divide itself into groups of equal sizes to
study the Chinese Remainder Theorem. When the class was divided into groups of 3, two
students were left out; when into groups of 4, one was left out. When it was divided into
groups of five, the students found that if the professor was added to one of the groups, no
one was left out. Since the professor had never really understood the Chinese Remainder
Theorem when he was in college, the last arrangement worked out nicely. How many
students were there in the class? [Assume that the class is as small as possible.]

Solution 4
(10 points)

Let x be the size of the class. When the class was divided into groups of three, two
students were left out. Therefore x ≡ 2 (mod 3). When the class was divided into groups
of four, one student was left out. Therefore x ≡ 1 (mod 4). When the class was divided
into groups of five, they were one short of being perfect. Therefore x + 1 ≡ 0 (mod 5).
All together, we have the following equations:

x ≡ 2 (mod 3)

x ≡ 1 (mod 4)

x ≡ −1 (mod 5).

The Chinese Remainder Theorem tells us that there is a unique solution mod 3 · 4 · 5 = 60.
At this point, you could go look up the three-equation formula to get a particular so-

lution in the book. The particular solutions are easy: x1 = 2, x2 = 1, and x3 = −1.
However, this is a little annoying. Another way is to look at the multiples of five minus
one:

−1, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59.
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These satisfy the first equation. Now only take the ones that are congruent to 1 mod 4:

9, 29, 49.

Now take the ones that are congruent to 2 mod 3:

29.

The unique solution mod 60 is x = 29.

Exercise 5 Find three consecutive positive integers such that the first is divisible by the
square of a prime, the second by the cube of a prime, and the third by the fourth power of
a prime. [The prime does not have to be the same for each integer.]

Solution 5
Consider the following congruence:

x ≡ 0 (mod 22)

x+ 1 ≡ 0 (mod 33)

x+ 2 ≡ 0 (mod 54).

It does not seem obvious that this should be true at all, but the Chinese Remainder Theorem
tells us that it does happen. In fact, it only happens once mod 67500!

The problem at this point is that this is a really big range. To solve this one with paper
and pencil, you would really need to to use the general formula from Chapter 5. However,
the vastly superior way to do it is to write a small little program:

[k for k in range(67500)
if k % 2**2 == 0

and (k + 1) % 3**3 == 0
and (k + 2) % 5**4 == 0]

It spits out [21248], and it’s not hard to check that that works.

Exercise 6 Fix relatively prime integers a and b. Use the Chinese Remainder theorem to
show that every common multiple of a and b is divisible by ab.

Solution 6
(5 points) An integer x is a common multiple of a and b iff

x = 0 (mod a)

x = 0 (mod b).
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By the Chinese Remainder Theorem, this has a unique solution mod ab. Since x = 0 is a
solution, it follows that every common multiple of a and b is congruent to 0 mod ab.

Exercise 7 If x2 ≡ a (mod m), then we say that x is a square root of a mod m.

(a) (2 points) Prove that the square roots of 1 mod p are ±1 when p is prime. That is,
show that the equation x2 = 1 (mod p) has exactly two incongruent solutions, 1
and −1.

(b) (2 points) Prove that a 6= 0 has either zero or two square roots mod p if p ≥ 3 is
prime. Prove that a = 0 has exactly one square root mod p.

(c) (1 point) Show that 0 has more than two square roots mod 36.

Solution 7

(a) The equation is equivalent to p | (x2 − 1), or p | (x− 1)(x+ 1). Since p is prime, it
must divide one of the two factors. That is, either p | (x− 1) or p | (x+ 1). This is
another way to say that x ≡ ±1 (mod p).

(b) If x2 ≡ a (mod p), then (−x)2 = x2 ≡ a (mod p), so x and −x are both square
roots of a. The problem is that sometimes x ≡ −x (mod p). This means that
p | 2x, so either p | 2 or p | x. The former implies p = 2, and the latter implies
a ≡ 0 (mod p).

On the other hand, if a ≡ 0 (mod p), then x2 ≡ 0 (mod p) implies p | x2, so p | x.
Thus every square root of 0 is 0 mod p.

(c) Both 02 and 62 are congruent to 0 mod 36, yet they are not congruent to each other
mod 36.

Exercise 8 This exercise involves programming.
Say that a positive integer n > k > 0 is k-divisible if n is divisible by n− k.

(a) Prove that k ≤ n ≤ 2k if n is k-divisible. [Hint: The smallest multiple of n − k is
2(n− k).]

(b) Write a function findDivisibles(k) which takes an integer k and returns all n
which are k-divisible. [Hint: You only need to look at k ≤ n ≤ 2k by the previous
part.]
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(c) For 1 ≤ k ≤ 20, compute Dk, the number of k-divisible integers n. Look the values
of Dk up in the OEIS. What entry seems most likely? Does the OEIS contain this
conjecture?

Solution 8

(a) Since n is a multiple of n − k, but not equal to n − k (since k > 0, we must have
n ≥ 2(n− k). Writing this gives n ≤ 2k.

(b) def findDivisibles(k):
return [n for n in range(k + 1, 2 * k + 1)

if n % (n - k) == 0]

(c) Using the code [len(findDivisibles(k) for k in range(1, 21)],
I get the following values:

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6.

It looks like—maybe!—this is equal to the number of divisors of k, which is A000005
in the OEIS.

You don’t have to know this next part. It’s just some fun thing I found while writing
the homework.

Proposition The number of k-divisible integers equals d(k), the number of divisors of k.

Proof If n is k-divisible, then n = (n−k)d for some unique integer d. Rewriting
this, we have

dk = (d− 1)n.

Since gcd(d−1, d) = 1, it follows that d−1 divides k. That is, for every k-divisible
integer d, we get a new divisor of k.

On the other hand, if l divides k, then let

n′ = (l + 1)(k/l),

which defines exactly one integer n′. Note that ln′ = (l+1)k, so (l+1)(n′−k) = n,
which shows that n is k-divisible. Thus, for every divisor of k, we get a new k-
divisible integer.

Putting these two together, it follows that the number of k-divisible numbers is
exactly d(k). �
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