# Number Theory Homework III 

## RDB

June 26, 2022

## Exercise 1

(a) (5 points) Show that the last digit of $n^{4}$ in base-10 is always 1 if $n$ is coprime with 10. [Hint: $\phi(10)=4$. Now use Euler's theorem.]
(b) (5 points) Prove by induction that $5^{m} \equiv 5(\bmod 10)$ for all integers $m \geq 1$.
(c) (5 points) Prove that the last base- 10 digit of $\left(5^{k} n\right)^{4}$ is 5 if $n$ is coprime with 10 and $k$ is any positive integer.

## Solution 1

(a) If $n$ is coprime with 10 , then $n^{4} \equiv 1(\bmod 10)$ by Euler's theorem, and the remainder $\bmod 10$ is the last digit in base- 10 .
(b) Induction. The base case is easy, and if $5^{m} \equiv 5(\bmod 10)$ then $5^{m+1} \equiv 25 \equiv 1$ $(\bmod 10)$.
(c) By the previous two parts, we have

$$
\left(5^{k} n\right)^{4}=5^{4 k} n^{4} \equiv 5 \cdot 1 \equiv 1 \quad(\bmod 10)
$$

## Exercise 2

(a) What is the remainder of $3^{130}$ when divided by 11 ?
(b) What is the remainder of $8^{38}$ when divided by 7 ?
(c) What is the remainder of $10^{13^{100}}$ when divided by 11 ?
[Hint: Euler. Fermat.]

## Solution 2

(a) (2 points) Note that $\phi(11)=10$, and $130=10 \cdot 13$. Since 3 is coprime with 11 , Euler's theorem states that

$$
3^{130}=\left(3^{10}\right)^{13} \equiv 1^{1} 3=1 \quad(\bmod 11) .
$$

(b) (2 points) Note that $\phi(7)=6$ and $38=6 \cdot 6+2$. Euler's theorem gives

$$
8^{38}=8^{6 \cdot 6+2} \equiv 8^{2} \quad(\bmod 7)
$$

Then $8^{2}=64 \equiv 1(\bmod 7)$.
(c) (5 points) By Euler's theorem, $10^{13^{100}} \equiv 10^{13^{100} \bmod 10}(\bmod 11)$ since $\operatorname{gcd}(10,11)=$ 1 and $\phi(11)=10$. By Euler's theorem again, $13^{100} \equiv 13^{100 \bmod 4}=1(\bmod 10)$ since $\operatorname{gcd}(13,10)=1$ and $\phi(10)=4$. Therefore $13^{100} \bmod 10=1$, so $10^{13^{100}} \equiv$ $10^{1}=10(\bmod 11)$.
Another, easier way to check this is by writing $10 \equiv-1(\bmod 11)$, so that $10^{\text {odd }} \equiv$ $-1 \equiv 10(\bmod 11)$.

Exercise 3 Euler's theorem states that $a^{\phi(n)} \equiv 1(\bmod n)$ for every $a$ which is coprime to $n$. For such an integer $a$, let $|a|_{n}$ be the least positive integer such that $a^{|a|_{n}} \equiv 1(\bmod n)$. This is called the multiplicative order of $a$ modulo $n$. For example,

$$
\begin{array}{ll}
2^{1}=2 \not \equiv 1 & (\bmod 7) \\
2^{2}=4 \not \equiv 1 & (\bmod 7) \\
2^{3}=8 \equiv 1 & (\bmod 7),
\end{array}
$$

so $|2|_{7}=3$.
(a) Compute $|2|_{n}$ for $n \in\{3,5,7,9,11,13\}$. Look these numbers up in the OEIS.
(b) Show that $|a|_{n}$ divides $\phi(n)$. [Hint: Write $\phi(n)=|a|_{n} k+r$ where $0 \leq r<|a|_{n}$. Raise $a$ to both sides and see what happens.]

## Solution 3

(a) (3 points, full credit if mostly right)

$$
\begin{aligned}
|2|_{3} & =2 \\
|2|_{5} & =4 \\
|2|_{7} & =3 \\
|2|_{9} & =6 \\
|2|_{11} & =10 \\
|2|_{13} & =12 .
\end{aligned}
$$

The OEIS entry is A2326.
(b) (5 points) If we Euclidean divide $\phi(n)$ by $|a|_{n}$, then we have

$$
\phi(n)=|a|_{n} q+r
$$

for some integers $q$ and $0 \leq r<|a|_{n}$. By Euler's theorem we get $a^{\phi(n)} \equiv 1$ $(\bmod n)$, and by definition $a^{|a|_{n}} \equiv 1(\bmod n)$. Therefore

$$
1 \equiv a^{\phi(n)}=a^{|a|_{n} q+r} \equiv a^{r} \quad(\bmod n)
$$

In summary,

$$
a^{r} \equiv 1 \quad(\bmod n),
$$

and $0 \leq r<|a|_{n}$. Since $|a|_{n}$ is the least positive integer such that $a^{|a|_{n}} \equiv 1$ $(\bmod n)$, we cannot have $r>0$, so $r=0$, which shows that $|a|_{n}$ divides $\phi(n)$.

Exercise 4 Prove that $a b \equiv 0(\bmod m)$ implies $b \equiv 0(\bmod m)$ if $\operatorname{gcd}(a, m)=1$.

## Solution 4

The statement is just $m \mid a b$, and we proved in class that this implies $m \mid b$ if $\operatorname{gcd}(m, a)=$ 1.

Exercise 5 Prove that if $\operatorname{gcd}(a, b)=1$, and $a$ and $b$ both divide $n$, then $a b$ divides $n$. [Hint: Multiply both sides of Bézout's lemma by $n$.]

## Solution 5

By Bézout's lemma, there are integers $x$ and $y$ such that

$$
a x+b y=1
$$

If we multiply by $n$, then we get

$$
a n x+b n y=n
$$

Since $b$ divides $n$, we have $n=b k$ for some integer $k$. Similarly, we have $n=a j$ for some integer $j$, so plugging these into the right places gives:

$$
a(b k) x+b(a j) y=n,
$$

so

$$
a b(k x+j y)=n,
$$

which shows that $a b$ divides $n$.
Exercise 6 Fix an integer $n$. A subset $S$ of $\{0,1,2, \ldots, n-1\}$ is closed under multiplication $\bmod n$ provided that, if $x, y \in S$ and $x y \equiv r(\bmod n)$ with $0 \leq r<n$, then $r \in S$. For example, if $n=10$ and $8,2 \in S$, then $8 \cdot 2=16 \equiv 6(\bmod 10)$, so $6 \in S$. You could have $x=y$, so also $2 \cdot 2=4 \in S$.
(a) Find the smallest subset of $\{0,1,2, \ldots, 10\}$ that is closed under multiplication mod 10 and contains 2.
(b) Find the smallest subset of $\{0,1,2, \ldots, 10\}$ that is closed under multiplication mod 10 and contains 2 and 3.

## Solution 6

(a) (5 points) Let $S$ be the smallest subset. Since $2 \in S$, we must have $2^{2}=4 \in S$, which then gives $2 \cdot 4=8 \in S$, and also $4^{2}=16 \equiv 6 \in S$. Thus $S$ contains at least $\{2,4,6,8\}$, and conversely this set is closed under multiplication. Therefore $S=\{2,4,6,8\}$.
(b) (5 points) Let $J$ be the smallest subjset. Since $2 \in S$, from the previous part $J$ must contain at least $\{2,4,6,8\}$. But it also must contain $9=3^{2}$ and $7 \equiv 3 \cdot 9(\bmod 10)$. Then $1 \equiv 3 \cdot 7(\bmod 10)$ is also in there, so $J$ contains at least

$$
\{1,2,3,4,6,7,8,9\} .
$$

Conversely this set is closed under multiplication, so $J$ equals it exactly.

