
Number Theory Homework III

RDB

June 26, 2022

Exercise 1

(a) (5 points) Show that the last digit of n4 in base-10 is always 1 if n is coprime with
10. [Hint: φ(10) = 4. Now use Euler’s theorem.]

(b) (5 points) Prove by induction that 5m ≡ 5 (mod 10) for all integers m ≥ 1.

(c) (5 points) Prove that the last base-10 digit of (5kn)4 is 5 if n is coprime with 10 and
k is any positive integer.

Solution 1

(a) If n is coprime with 10, then n4 ≡ 1 (mod 10) by Euler’s theorem, and the remain-
der mod 10 is the last digit in base-10.

(b) Induction. The base case is easy, and if 5m ≡ 5 (mod 10) then 5m+1 ≡ 25 ≡ 1
(mod 10).

(c) By the previous two parts, we have

(5kn)4 = 54kn4 ≡ 5 · 1 ≡ 1 (mod 10).

Exercise 2

(a) What is the remainder of 3130 when divided by 11?

(b) What is the remainder of 838 when divided by 7?
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(c) What is the remainder of 1013100 when divided by 11?

[Hint: Euler. Fermat.]

Solution 2

(a) (2 points) Note that φ(11) = 10, and 130 = 10 · 13. Since 3 is coprime with 11,
Euler’s theorem states that

3130 = (310)13 ≡ 113 = 1 (mod 11).

(b) (2 points) Note that φ(7) = 6 and 38 = 6 · 6 + 2. Euler’s theorem gives

838 = 86·6+2 ≡ 82 (mod 7).

Then 82 = 64 ≡ 1 (mod 7).

(c) (5 points) By Euler’s theorem, 1013100 ≡ 1013
100 mod 10 (mod 11) since gcd(10, 11) =

1 and φ(11) = 10. By Euler’s theorem again, 13100 ≡ 13100 mod 4 = 1 (mod 10)
since gcd(13, 10) = 1 and φ(10) = 4. Therefore 13100 mod 10 = 1, so 1013

100 ≡
101 = 10 (mod 11).

Another, easier way to check this is by writing 10 ≡ −1 (mod 11), so that 10odd ≡
−1 ≡ 10 (mod 11).

Exercise 3 Euler’s theorem states that aφ(n) ≡ 1 (mod n) for every awhich is coprime to
n. For such an integer a, let |a|n be the least positive integer such that a|a|n ≡ 1 (mod n).
This is called the multiplicative order of a modulo n. For example,

21 = 2 6≡ 1 (mod 7)

22 = 4 6≡ 1 (mod 7)

23 = 8 ≡ 1 (mod 7),

so |2|7 = 3.

(a) Compute |2|n for n ∈ {3, 5, 7, 9, 11, 13}. Look these numbers up in the OEIS.

(b) Show that |a|n divides φ(n). [Hint: Write φ(n) = |a|nk + r where 0 ≤ r < |a|n.
Raise a to both sides and see what happens.]
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Solution 3

(a) (3 points, full credit if mostly right)

|2|3 = 2

|2|5 = 4

|2|7 = 3

|2|9 = 6

|2|11 = 10

|2|13 = 12.

The OEIS entry is A2326.

(b) (5 points) If we Euclidean divide φ(n) by |a|n, then we have

φ(n) = |a|nq + r

for some integers q and 0 ≤ r < |a|n. By Euler’s theorem we get aφ(n) ≡ 1
(mod n), and by definition a|a|n ≡ 1 (mod n). Therefore

1 ≡ aφ(n) = a|a|nq+r ≡ ar (mod n).

In summary,
ar ≡ 1 (mod n),

and 0 ≤ r < |a|n. Since |a|n is the least positive integer such that a|a|n ≡ 1
(mod n), we cannot have r > 0, so r = 0, which shows that |a|n divides φ(n).

Exercise 4 Prove that ab ≡ 0 (mod m) implies b ≡ 0 (mod m) if gcd(a,m) = 1.

Solution 4
The statement is just m | ab, and we proved in class that this implies m | b if gcd(m, a) =
1.

Exercise 5 Prove that if gcd(a, b) = 1, and a and b both divide n, then ab divides n.
[Hint: Multiply both sides of Bézout’s lemma by n.]

3



Solution 5
By Bézout’s lemma, there are integers x and y such that

ax+ by = 1.

If we multiply by n, then we get

anx+ bny = n.

Since b divides n, we have n = bk for some integer k. Similarly, we have n = aj for some
integer j, so plugging these into the right places gives:

a(bk)x+ b(aj)y = n,

so
ab(kx+ jy) = n,

which shows that ab divides n.

Exercise 6 Fix an integer n. A subset S of {0, 1, 2, . . . , n− 1} is closed under multipli-
cation mod n provided that, if x, y ∈ S and xy ≡ r (mod n) with 0 ≤ r < n, then r ∈ S.
For example, if n = 10 and 8, 2 ∈ S, then 8 · 2 = 16 ≡ 6 (mod 10), so 6 ∈ S. You could
have x = y, so also 2 · 2 = 4 ∈ S.

(a) Find the smallest subset of {0, 1, 2, . . . , 10} that is closed under multiplication mod
10 and contains 2.

(b) Find the smallest subset of {0, 1, 2, . . . , 10} that is closed under multiplication mod
10 and contains 2 and 3.

Solution 6

(a) (5 points) Let S be the smallest subset. Since 2 ∈ S, we must have 22 = 4 ∈ S,
which then gives 2 · 4 = 8 ∈ S, and also 42 = 16 ≡ 6 ∈ S. Thus S contains at
least {2, 4, 6, 8}, and conversely this set is closed under multiplication. Therefore
S = {2, 4, 6, 8}.

(b) (5 points) Let J be the smallest subjset. Since 2 ∈ S, from the previous part J must
contain at least {2, 4, 6, 8}. But it also must contain 9 = 32 and 7 ≡ 3 · 9 (mod 10).
Then 1 ≡ 3 · 7 (mod 10) is also in there, so J contains at least

{1, 2, 3, 4, 6, 7, 8, 9}.

Conversely this set is closed under multiplication, so J equals it exactly.
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