Number Theory Homework II

RDB

June 11, 2022

This homework is a mix of Week 1 and early Week 2 material. In general, assume that variables like n, m, and k are integers.

Exercise 1

(a) Write the following integers in binary: 342, 2^{10}, and (112) .
(b) Write the following integers in base 5: ten, one-hundred and forty-one, two-hundred and thirteen, and one-thousand.

Solution 1

(1 point for each number; 7 points total)
(a) $101010110_{2}, 10000000000_{2}$, and 1110_{2}
(b) $20_{5}, 1031_{5}, 1323_{5}$, and 13000_{5}.

Exercise 2 For each of the following pairs of integers a, b, find the greatest common divisor of a and b and also integers x, y such that $a x+b y=\operatorname{gcd}(a, b)$.
(a) 527,8
(b) 842,184
(c) 1,29
(d) $1, n$
(e) 54,10

Solution 2

(1 point for gcd, 1 point for x and y; 10 points total)
(a) $1 ; 527(-1)+8(66)=1$
(b) $2 ; 842(33)+184(-151)=2$
(c) $1 ; 1(1)+29(0)=1$
(d) $1 ; 1(1)+n(0)=1$
(e) $2 ; 54(-2)+10(11)=2$

Exercise 3 For each of the following linear diophantine equations, give the general solution, if any solutions exist.
(a) $2 x+3 y=1$
(b) $60 x+17 y=7$
(c) $19 x+95 y=-3$
(d) $x+n y=1$ [The variable n is a parameter; assume that $n \neq 0$, but otherwise your solutions should have an n in them somewhere.]

Solution 3

(a) $x=-1+3 t, y=1-2 t$
(b) $x=7(2+17 t), y=7(-7-60 t)$
(c) The gcd is 19 , which does not divide -3 , so there are no solutions.
(d) $x=1+n t, y=-t$.

Exercise 4 Prove that

$$
\operatorname{gcd}(n, 2)=1+\frac{1+(-1)^{n}}{2}
$$

[Hint: This is not as fancy as it looks.]

Solution 4

(5 points)
If n is even, then $\operatorname{gcd}(n, 2)=2$ and

$$
1+\frac{1+(-1)^{n}}{2}=2
$$

If n is odd, then $\operatorname{gcd}(n, 2)=1$ and

$$
1+\frac{1+(-1)^{n}}{2}=1
$$

Exercise 5 Prove a converse of Bézout's lemma: If $a x+b y=g>0$ and g divides both a and b, then $g=\operatorname{gcd}(a, b)$. In particular, if $a x+b y=1$, then a and b are coprime.

Solution 5

(10 points)

If $a x+b y=g$, then every common divisor of a and b divides g, since $a x+b y$ is a linear combination of a and b. In particular, $\operatorname{gcd}(a, b)$ divides g. On the other hand, since g is a common divisor of a and b, by definition g divides $\operatorname{gcd}(a, b)$. If two positive integers divide each other, then they are equal, so $g=\operatorname{gcd}(a, b)$.
[No points taken off for not mentioning $g>0$.]
Exercise 6 You order $\$ 143$ worth of protein bars online in 16ct containers. The chocolate flavor costs $\$ 15$ per box and the vanilla costs $\$ 17$ per box. How many of each box did you buy? [Hint: If you bought x chocolate and y vanilla, then the total cost is $15 x+17 y$.]

Solution 6

(8 points)
The amount of bars x and y that you bought must be integer solutions to the equation

$$
15 x+17 y=143 .
$$

The gcd of 15 and 17 is 1 , so this equation does have a solution. In fact, $x_{0}=143 \cdot 8$ and $y_{0}=143 \cdot-7$ will work, since

$$
15(8)+17(-7)=1,
$$

and multiplying by 143 gives

$$
15(143 \cdot 8)+17(143 \cdot-7)=143
$$

The general solution to the equation is therefore

$$
x=143 \cdot 8+17 t ; \quad y=143 \cdot-7-15 t .
$$

The first equation is positive if and only if $t \geq-67$, while the second equation is positive if and only if $t \leq-67$. Therefore, they are both positive only when $t=-67$, which gives

$$
x=143 \cdot 8+17(-67)=5
$$

and

$$
y=143 \cdot-7-15(-67)=4
$$

Exercise 7 You are opening a gym for mathematicians. They are very particular: It must be possible to work out with every weight in $\{0,1,2,3, \ldots, 255\}$. (For instance, someone wants to bench exactly 114 pounds.) What is the fewest number of weights you can buy to achieve this goal? For example, you could use 255 1-pound weights. Can you do it with fewer?

Solution 7

You can use a binary system. Pick weights of size $1,2,4,8$, and so on, up to 128 . Every weight up to 255 is expressible in exactly one way, namely its binary expansion. This takes eight weights.

Eight weights is a considerable improvement over 255 weights, but is it the best you could do? Yes!

Suppose that you have n weights. There are 2^{n} different ways to pick a collection of the weights, and therefore at most 2^{n} different weights you could represent. If we are to represent each of the 256 weights in $\{0,1,2, \ldots, 255\}$, we must have $2^{n} \geq 256$, or $n \geq \log _{2} 256=8$. So eight is the best that you could do.

Exercise 8 This exercise involves programming.
(a) Write a function isprime to check if a given integer n is prime by checking every possible divisor from 2 to $n-1$.
(b) Prove that, if n is not prime, then it must have at least one divisor $d \leq \sqrt{n}$. [Hint: Assume that n is not prime and that all divisors are $>\sqrt{n}$. Pick divisors a and b with $n=a b$. Find a contradiction.]
(c) Write a second function isprimeSqrt to check if n is prime by checking every possible divisor from 2 to \sqrt{n}.
(d) Go to https://bigprimes.org/, get a big prime, and test your two functions on it. Which is faster?

Solution 8

(a)

```
def isprime(n):
    for k in range(2, n):
            if n % k == 0:
                            return False
    return True
```

(b) If $a, b>\sqrt{n}$, then $a b>n$. Therefore, if $n=a b$ for integers a and b, at least one factor is $\geq \sqrt{n}$ and one is $\leq \sqrt{n}$. So, if n is composite, it has at least one factor $\leq \sqrt{n}$.
(c)

```
from math import floor, sqrt
def isprimeSqrt(n):
    for k in range(2, floor(sqrt(n)) + 1):
        if n % k == 0:
                            return False
    return True
```

(d) isprimeSqrt is considerably faster for large primes, because it only checks \sqrt{n} numbers while isprime checks n numbers.

