Number Theory Midterm II

RDB

June 14, 2023

If you know the enemy and know yourself, your victory will not stand in doubt. — Sun-Tzu (the other one)

INSTRUCTIONS No outside materials (notes, textbook, internet) or resources (calculators). Write your name on the big line below.

Good luck,

Name: _____ !

Problem 1 Using the Chinese Remainder Theorem, find the smallest positive solution x to the following system of equations, if any exists:

$$x = 1 \pmod{3}$$

 $x = 6 \pmod{7}.$

(10 points)

Problem 2 Find the smallest positive integer x such that x is divisible by 3, x - 1 is divisible by 5, and x + 1 is divisible by 7. (10 points)

Problem 3 Using the Chinese Remainder Theorem, find the smallest positive solution x to the following system of equations, if any exists:

$$2x = 3 \pmod{4}$$

 $3x = 1 \pmod{11}.$

(10 points)

Problem 4

- (a) How many divisors does 980 have? (5 points)
- (**b**) What is the sum of those divisors? (5 points)

Problem 5 Prove that the divisor function d(n) is multiplicative. (10 points)

Problem 6 Let f be a multiplicative function. Prove that f(n) = 1 for all positive integers n iff $f(p^k) = 1$ for all primes p and nonnegative integers k. (10 points)

Problem 7 Let $\sigma(n)$ be the sum of divisors of n. Prove that

$$\sigma(p^k) = \frac{p^{k+1} - 1}{p - 1}$$

for every prime power p^k . [Hint: $\sum_{j=0}^k x^j = \frac{x^{k+1}-1}{x-1}$ if $x \neq 1$.] (10 points)

Problem 8 What are the last two digits of 3^{44} ? [Hint: The last two digits are the remainder when dividing by 100.] (10 points)

Problem 9 What is the remainder of $13^{(7^{42})}$ when divided by 15? (That's 13 to the 7^{42} , not $13^{7\cdot42}$.)

Problem 10 Prove that ab divides x if a and b divide x and gcd(a, b) = 1. (10 points)

BONUS PROBLEM The exam is scored out of 100 points, all contained in the previous ten questions. The following is a bonus question worth a potentially infinite number of points.

Problem 11 A positive integer n is *perfect* provided that the sum of its proper divisors equals n. In other words, if $\sigma(n) = 2n$.

- (a) (1 point each) Write as many perfect numbers as you know.
- (**b**) (5 points) Prove that $\sum_{d|n} \frac{1}{d} = 2$ if *n* is perfect.