Number Theory Midterm II

RDB

June 14, 2023

If you know the enemy and know yourself, your victory will not stand in doubt.

- Sun-Tzu (the other one)

INSTRUCTIONS No outside materials (notes, textbook, internet) or resources (calculators). Write your name on the big line below.

Good luck,
Name: \qquad !

Problem 1 Using the Chinese Remainder Theorem, find the smallest positive solution x to the following system of equations, if any exists:

$$
\begin{array}{ll}
x=1 & (\bmod 3) \\
x=6 & (\bmod 7) .
\end{array}
$$

(10 points)

Problem 2 Find the smallest positive integer x such that x is divisible by $3, x-1$ is divisible by 5 , and $x+1$ is divisible by 7 . (10 points)

Problem 3 Using the Chinese Remainder Theorem, find the smallest positive solution x to the following system of equations, if any exists:

$$
\begin{array}{ll}
2 x=3 & (\bmod 4) \\
3 x=1 & (\bmod 11) .
\end{array}
$$

(10 points)

Problem 4

(a) How many divisors does 980 have? (5 points)
(b) What is the sum of those divisors? (5 points)

Problem 5 Prove that the divisor function $d(n)$ is multiplicative. (10 points)

Problem 6 Let f be a multiplicative function. Prove that $f(n)=1$ for all positive integers n iff $f\left(p^{k}\right)=1$ for all primes p and nonnegative integers k. (10 points)

Problem 7 Let $\sigma(n)$ be the sum of divisors of n. Prove that

$$
\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}
$$

for every prime power p^{k}. [Hint: $\sum_{j=0}^{k} x^{j}=\frac{x^{k+1}-1}{x-1}$ if $x \neq 1$.] (10 points)

Problem 8 What are the last two digits of 3^{44} ? [Hint: The last two digits are the remainder when dividing by 100.] (10 points)

Problem 9 What is the remainder of $13^{\left(7^{42}\right)}$ when divided by 15 ? (That's 13 to the 7^{42}, not $13^{7.42}$.)

Problem 10 Prove that $a b$ divides x if a and b divide x and $\operatorname{gcd}(a, b)=1$. (10 points)

BONUS PROBLEM The exam is scored out of 100 points, all contained in the previous ten questions. The following is a bonus question worth a potentially infinite number of points.

Problem 11 A positive integer n is perfect provided that the sum of its proper divisors equals n. In other words, if $\sigma(n)=2 n$.
(a) (1 point each) Write as many perfect numbers as you know.
(b) (5 points) Prove that $\sum_{d \mid n} \frac{1}{d}=2$ if n is perfect.

